Resolving the Fast Kinetics of Cooperative Binding: Ca2+ Buffering by Calretinin

نویسندگان

  • Guido C Faas
  • Beat Schwaller
  • Julio L Vergara
  • Istvan Mody
چکیده

Cooperativity is one of the most important properties of molecular interactions in biological systems. It is the ability to influence ligand binding at one site of a macromolecule by previous ligand binding at another site of the same molecule. As a consequence, the affinity of the macromolecule for the ligand is either decreased (negative cooperativity) or increased (positive cooperativity). Over the last 100 years, O2 binding to hemoglobin has served as the paradigm for cooperative ligand binding and allosteric modulation, and four practical models were developed to quantitatively describe the mechanism: the Hill, the Adair-Klotz, the Monod-Wyman-Changeux, and the Koshland-Némethy-Filmer models. The predictions of these models apply under static conditions when the binding reactions are at equilibrium. However, in a physiological setting, e.g., inside a cell, the timing and dynamics of the binding events are essential. Hence, it is necessary to determine the dynamic properties of cooperative binding to fully understand the physiological implications of cooperativity. To date, the Monod-Wyman-Changeux model was applied to determine the kinetics of cooperative binding to biologically active molecules. In this model, cooperativity is established by postulating two allosteric isoforms with different binding properties. However, these studies were limited to special cases, where transition rates between allosteric isoforms are much slower than the binding rates or where binding and unbinding rates could be measured independently. For all other cases, the complex mathematical description precludes straightforward interpretations. Here, we report on calculating for the first time the fast dynamics of a cooperative binding process, the binding of Ca2+ to calretinin. Calretinin is a Ca2+-binding protein with four cooperative binding sites and one independent binding site. The Ca2+ binding to calretinin was assessed by measuring the decay of free Ca2+ using a fast fluorescent Ca2+ indicator following rapid (<50-mus rise time) Ca2+ concentration jumps induced by uncaging Ca2+ from DM-nitrophen. To unravel the kinetics of cooperative binding, we devised several approaches based on known cooperative binding models, resulting in a novel and relatively simple model. This model revealed unexpected and highly specific nonlinear properties of cellular Ca2+ regulation by calretinin. The association rate of Ca2+ with calretinin speeds up as the free Ca2+ concentration increases from cytoplasmic resting conditions ( approximately 100 nM) to approximately 1 muM. As a consequence, the Ca2+ buffering speed of calretinin highly depends on the prevailing Ca2+ concentration prior to a perturbation. In addition to providing a novel mode of action of cellular Ca2+ buffering, our model extends the analysis of cooperativity beyond the static steady-state condition, providing a powerful tool for the investigation of the dynamics and functional significance of cooperative binding in general.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measuring the kinetics of calcium binding proteins with flash photolysis.

BACKGROUND Calcium-binding proteins (CBPs) are instrumental in the control of Ca2+ signaling. They are the fastest players within the Ca2+ toolkit responding within microseconds to [Ca2+] changes. The CBPs compete for Ca2+ which plays a direct role in modulating Ca2+ transients and the resulting biochemical message. The kinetic properties of the CBPs have to be known to have a good understandin...

متن کامل

Developmental expression of the Ca2+-binding proteins calretinin and parvalbumin at the calyx of Held of rats and mice.

Ca(2+)-binding proteins of the EF-hand family are widely expressed in the CNS, and contribute to intracellular Ca(2+) buffering in neurons. In nerve terminals, Ca(2+)-binding proteins are likely to regulate transmitter release probability and synaptic short-term-plasticity. Here, we investigated the developmental expression pattern of calretinin and parvalbumin at a large excitatory synapse, th...

متن کامل

Colocalization of calretinin and calbindin-D28k with oxytocin and vasopressin in rat supraoptic nucleus neurons: a quantitative study.

Recent electrophysiological experiments, in which purified calbindin-D28k (calbindin) and calretinin antibodies were diffused into these neurons, showed that Ca2+-dependent membrane potentials and firing patterns were profoundly and predictably affected by Ca2+-binding proteins (CaBPs). The present study used quantitative analyses of a dual-labeling immunofluorescence method to investigate the ...

متن کامل

Altered neuronal excitability in cerebellar granule cells of mice lacking calretinin.

Calcium-binding proteins such as calretinin are abundantly expressed in distinctive patterns in the CNS, but their physiological function remains poorly understood. Calretinin is expressed in cerebellar granule cells, which provide the major excitatory input to Purkinje cells through parallel fibers. Calretinin-deficient mice exhibit dramatic alterations in motor coordination and Purkinje cell ...

متن کامل

Role of calcium binding proteins in the control of cerebellar granule cell neuronal excitability: experimental and modeling studies.

Calcium binding proteins, such as calretinin, are abundantly expressed in distinctive patterns in the central nervous system but their physiological function remains poorly understood. Calretinin is expressed in cerebellar granule cells which provide the major excitatory input to Purkinje cells through parallel fibers. Calretinin deficient mice exhibit dramatic alterations in motor coordination...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS Biology

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2007